Введите задачу...
Алгебра Примеры
Этап 1
Приравняем к .
Этап 2
Этап 2.1
Разложим левую часть уравнения на множители.
Этап 2.1.1
Перегруппируем члены.
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.2.1
Вынесем множитель из .
Этап 2.1.2.2
Вынесем множитель из .
Этап 2.1.2.3
Вынесем множитель из .
Этап 2.1.3
Перепишем в виде .
Этап 2.1.4
Разложим на множители.
Этап 2.1.4.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.1.4.2
Избавимся от ненужных скобок.
Этап 2.1.5
Разложим на множители, используя теорему о рациональных корнях.
Этап 2.1.5.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 2.1.5.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 2.1.5.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 2.1.5.3.1
Подставим в многочлен.
Этап 2.1.5.3.2
Возведем в степень .
Этап 2.1.5.3.3
Добавим и .
Этап 2.1.5.3.4
Вычтем из .
Этап 2.1.5.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 2.1.5.5
Разделим на .
Этап 2.1.5.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
- | + | + | - |
Этап 2.1.5.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | + | - |
Этап 2.1.5.5.3
Умножим новое частное на делитель.
- | + | + | - | ||||||||
+ | - |
Этап 2.1.5.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | + | - | ||||||||
- | + |
Этап 2.1.5.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | + | - | ||||||||
- | + | ||||||||||
+ |
Этап 2.1.5.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Этап 2.1.5.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Этап 2.1.5.5.8
Умножим новое частное на делитель.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Этап 2.1.5.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Этап 2.1.5.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Этап 2.1.5.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Этап 2.1.5.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Этап 2.1.5.5.13
Умножим новое частное на делитель.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 2.1.5.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Этап 2.1.5.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Этап 2.1.5.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 2.1.5.6
Запишем в виде набора множителей.
Этап 2.1.6
Вынесем множитель из .
Этап 2.1.6.1
Вынесем множитель из .
Этап 2.1.6.2
Вынесем множитель из .
Этап 2.1.7
Применим свойство дистрибутивности.
Этап 2.1.8
Умножим на , сложив экспоненты.
Этап 2.1.8.1
Умножим на .
Этап 2.1.8.1.1
Возведем в степень .
Этап 2.1.8.1.2
Применим правило степени для объединения показателей.
Этап 2.1.8.2
Добавим и .
Этап 2.1.9
Умножим на .
Этап 2.1.10
Добавим и .
Этап 2.1.11
Разложим на множители.
Этап 2.1.11.1
Перепишем в разложенном на множители виде.
Этап 2.1.11.1.1
Вынесем наибольший общий делитель из каждой группы.
Этап 2.1.11.1.1.1
Сгруппируем первые два члена и последние два члена.
Этап 2.1.11.1.1.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.1.11.1.2
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.1.11.2
Избавимся от ненужных скобок.
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Добавим к обеим частям уравнения.
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Вычтем из обеих частей уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Этап 2.5.2.1
Вычтем из обеих частей уравнения.
Этап 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.5.2.3
Перепишем в виде .
Этап 2.5.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.5.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.5.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.5.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 3