Введите задачу...
Алгебра Примеры
Этап 1
Умножим обе части на .
Этап 2
Этап 2.1
Упростим левую часть.
Этап 2.1.1
Упростим .
Этап 2.1.1.1
Применим свойство дистрибутивности.
Этап 2.1.1.2
Умножим на .
Этап 2.2
Упростим правую часть.
Этап 2.2.1
Сократим общий множитель .
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Перепишем это выражение.
Этап 3
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Разложим на множители, используя метод группировки.
Этап 3.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.4
Приравняем к , затем решим относительно .
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Добавим к обеим частям уравнения.
Этап 3.5
Приравняем к , затем решим относительно .
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Вычтем из обеих частей уравнения.
Этап 3.6
Окончательным решением являются все значения, при которых верно.
Этап 4
Этап 4.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4.2
Область определения ― это все значения , при которых выражение определено.
Этап 5
Используем каждый корень для создания контрольных интервалов.
Этап 6
Этап 6.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.1.2
Заменим на в исходном неравенстве.
Этап 6.1.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 6.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.2.2
Заменим на в исходном неравенстве.
Этап 6.2.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 6.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.3.2
Заменим на в исходном неравенстве.
Этап 6.3.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 6.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.4.2
Заменим на в исходном неравенстве.
Этап 6.4.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 6.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Ложь
Истина
Ложь
Истина
Ложь
Этап 7
Решение состоит из всех истинных интервалов.
или
Этап 8
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 9