Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.5
Поскольку не имеет множителей, кроме и .
— простое число
Этап 1.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.7
Множителем является само значение .
встречается раз.
Этап 1.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.9
НОК представляет собой произведение числовой части и переменной части.
Этап 2
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.2
Умножим .
Этап 2.2.2.1
Объединим и .
Этап 2.2.2.2
Умножим на .
Этап 2.2.3
Сократим общий множитель .
Этап 2.2.3.1
Сократим общий множитель.
Этап 2.2.3.2
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Этап 2.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.2
Сократим общий множитель .
Этап 2.3.2.1
Вынесем множитель из .
Этап 2.3.2.2
Сократим общий множитель.
Этап 2.3.2.3
Перепишем это выражение.
Этап 2.3.3
Сократим общий множитель .
Этап 2.3.3.1
Сократим общий множитель.
Этап 2.3.3.2
Перепишем это выражение.
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Перенесем все члены без в правую часть уравнения.
Этап 3.2.1
Вычтем из обеих частей уравнения.
Этап 3.2.2
Вычтем из .