Алгебра Примеры

Этап 1
Перепишем уравнение в виде .
Этап 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем в виде .
Этап 4.2
Умножим на .
Этап 4.3
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим на .
Этап 4.3.2
Возведем в степень .
Этап 4.3.3
Возведем в степень .
Этап 4.3.4
Применим правило степени для объединения показателей.
Этап 4.3.5
Добавим и .
Этап 4.3.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.3.6.1
С помощью запишем в виде .
Этап 4.3.6.2
Применим правило степени и перемножим показатели, .
Этап 4.3.6.3
Объединим и .
Этап 4.3.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.6.4.1
Сократим общий множитель.
Этап 4.3.6.4.2
Перепишем это выражение.
Этап 4.3.6.5
Найдем экспоненту.
Этап 4.4
Объединим, используя правило умножения для радикалов.
Этап 4.5
Изменим порядок множителей в .
Этап 5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.4
Вычтем из обеих частей уравнения.
Этап 5.5
Полное решение является результатом как положительных, так и отрицательных частей решения.