Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.4
Вынесем множитель из .
Этап 1.1.5
Вынесем множитель из .
Этап 1.2
Перепишем в виде .
Этап 1.3
Пусть . Подставим вместо для всех.
Этап 1.4
Разложим на множители, используя метод группировки.
Этап 1.4.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.4.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.5
Заменим все вхождения на .
Этап 1.6
Перепишем в виде .
Этап 1.7
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.8
Перепишем в виде .
Этап 1.9
Разложим на множители.
Этап 1.9.1
Разложим на множители.
Этап 1.9.1.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.9.1.2
Избавимся от ненужных скобок.
Этап 1.9.2
Избавимся от ненужных скобок.
Этап 2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3
Приравняем к .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Добавим к обеим частям уравнения.
Этап 8
Окончательным решением являются все значения, при которых верно.