Введите задачу...
Алгебра Примеры
Этап 1
Преобразуем неравенство в равенство.
Этап 2
Этап 2.1
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 2.2
Решим относительно .
Этап 2.2.1
Перепишем уравнение в виде .
Этап 2.2.2
Упростим .
Этап 2.2.2.1
Упростим выражение.
Этап 2.2.2.1.1
Перепишем в виде .
Этап 2.2.2.1.2
Применим правило степени и перемножим показатели, .
Этап 2.2.2.2
Сократим общий множитель .
Этап 2.2.2.2.1
Сократим общий множитель.
Этап 2.2.2.2.2
Перепишем это выражение.
Этап 2.2.2.3
Найдем экспоненту.
Этап 3
Этап 3.1
Зададим аргумент в большим , чтобы узнать, где определено данное выражение.
Этап 3.2
Область определения ― это все значения , при которых выражение определено.
Этап 4
Используем каждый корень для создания контрольных интервалов.
Этап 5
Этап 5.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 5.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 5.1.2
Заменим на в исходном неравенстве.
Этап 5.1.3
Определим, является ли истинным это неравенство.
Этап 5.1.3.1
Уравнение невозможно решить, потому что оно не определено.
Этап 5.1.3.2
Левая часть не имеет решения. Это означает, что данное утверждение ложно.
Ложь
Ложь
Ложь
Этап 5.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 5.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 5.2.2
Заменим на в исходном неравенстве.
Этап 5.2.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 5.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 5.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 5.3.2
Заменим на в исходном неравенстве.
Этап 5.3.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 5.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Ложь
Истина
Ложь
Этап 6
Решение состоит из всех истинных интервалов.
Этап 7
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 8