Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.2
Вынесем множитель из .
Этап 1.3
Вынесем множитель из .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Объединим и .
Этап 3.2.3
Сократим общий множитель .
Этап 3.2.3.1
Сократим общий множитель.
Этап 3.2.3.2
Перепишем это выражение.
Этап 3.2.4
Применим свойство дистрибутивности.
Этап 3.2.5
Умножим на .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2
Сократим общий множитель .
Этап 3.3.1.2.1
Сократим общий множитель.
Этап 3.3.1.2.2
Перепишем это выражение.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.5
Перенесем влево от .
Этап 3.3.1.6
Упростим каждый член.
Этап 3.3.1.6.1
Умножим на , сложив экспоненты.
Этап 3.3.1.6.1.1
Перенесем .
Этап 3.3.1.6.1.2
Умножим на .
Этап 3.3.1.6.2
Перепишем в виде .
Этап 3.3.1.7
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.8
Сократим общий множитель .
Этап 3.3.1.8.1
Сократим общий множитель.
Этап 3.3.1.8.2
Перепишем это выражение.
Этап 3.3.1.9
Сократим общий множитель .
Этап 3.3.1.9.1
Сократим общий множитель.
Этап 3.3.1.9.2
Перепишем это выражение.
Этап 4
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Вычтем из обеих частей уравнения.
Этап 4.4
Вычтем из .
Этап 4.5
Разложим на множители методом группировки
Этап 4.5.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 4.5.1.1
Вынесем множитель из .
Этап 4.5.1.2
Запишем как плюс
Этап 4.5.1.3
Применим свойство дистрибутивности.
Этап 4.5.2
Вынесем наибольший общий делитель из каждой группы.
Этап 4.5.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.5.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.5.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.7
Приравняем к , затем решим относительно .
Этап 4.7.1
Приравняем к .
Этап 4.7.2
Решим относительно .
Этап 4.7.2.1
Добавим к обеим частям уравнения.
Этап 4.7.2.2
Разделим каждый член на и упростим.
Этап 4.7.2.2.1
Разделим каждый член на .
Этап 4.7.2.2.2
Упростим левую часть.
Этап 4.7.2.2.2.1
Сократим общий множитель .
Этап 4.7.2.2.2.1.1
Сократим общий множитель.
Этап 4.7.2.2.2.1.2
Разделим на .
Этап 4.8
Приравняем к , затем решим относительно .
Этап 4.8.1
Приравняем к .
Этап 4.8.2
Добавим к обеим частям уравнения.
Этап 4.9
Окончательным решением являются все значения, при которых верно.