Введите задачу...
Алгебра Примеры
Этап 1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в куб.
Этап 2
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Упростим .
Этап 2.2.1.1
Применим правило умножения к .
Этап 2.2.1.2
Применим правило степени для распределения показателей.
Этап 2.2.1.2.1
Применим правило умножения к .
Этап 2.2.1.2.2
Применим правило умножения к .
Этап 2.2.1.3
Возведем в степень .
Этап 2.2.1.4
Перемножим экспоненты в .
Этап 2.2.1.4.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.4.2
Сократим общий множитель .
Этап 2.2.1.4.2.1
Сократим общий множитель.
Этап 2.2.1.4.2.2
Перепишем это выражение.
Этап 2.2.1.5
Найдем экспоненту.
Этап 2.2.1.6
Умножим на .
Этап 2.2.1.7
Перемножим экспоненты в .
Этап 2.2.1.7.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.7.2
Сократим общий множитель .
Этап 2.2.1.7.2.1
Сократим общий множитель.
Этап 2.2.1.7.2.2
Перепишем это выражение.
Этап 2.2.1.8
Упростим.
Этап 2.3
Упростим правую часть.
Этап 2.3.1
Упростим .
Этап 2.3.1.1
Вынесем множитель из .
Этап 2.3.1.1.1
Вынесем множитель из .
Этап 2.3.1.1.2
Вынесем множитель из .
Этап 2.3.1.1.3
Вынесем множитель из .
Этап 2.3.1.2
Перепишем в виде .
Этап 2.3.1.2.1
С помощью запишем в виде .
Этап 2.3.1.2.2
Применим правило степени и перемножим показатели, .
Этап 2.3.1.2.3
Объединим и .
Этап 2.3.1.2.4
Сократим общий множитель .
Этап 2.3.1.2.4.1
Сократим общий множитель.
Этап 2.3.1.2.4.2
Перепишем это выражение.
Этап 2.3.1.2.5
Упростим.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Умножим на .
Этап 3
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Вычтем из .
Этап 3.2
Разделим каждый член на и упростим.
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Сократим общий множитель .
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Этап 3.2.3.1
Разделим на .