Алгебра Примеры

Risolvere per x 9^(2x)*9^(1-3x)=27^(x+2)
Этап 1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1
Применим правило степени для объединения показателей.
Этап 1.2
Вычтем из .
Этап 2
Сформируем в уравнении эквивалентные выражения с одинаковыми основаниями.
Этап 3
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Перепишем.
Этап 4.1.2
Упростим путем добавления нулей.
Этап 4.1.3
Применим свойство дистрибутивности.
Этап 4.1.4
Умножим.
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Умножим на .
Этап 4.1.4.2
Умножим на .
Этап 4.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Применим свойство дистрибутивности.
Этап 4.2.2
Умножим на .
Этап 4.3
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вычтем из обеих частей уравнения.
Этап 4.3.2
Вычтем из .
Этап 4.4
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Вычтем из обеих частей уравнения.
Этап 4.4.2
Вычтем из .
Этап 4.5
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Разделим каждый член на .
Этап 4.5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.5.2.1.1
Сократим общий множитель.
Этап 4.5.2.1.2
Разделим на .
Этап 4.5.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.5.3.1
Вынесем знак минуса перед дробью.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: