Алгебра Примеры

Найти уравнение при заданной точке и угловом коэффициенте What is the equation of the line that passes through the point (-5,2) and has a slope of 4/5 ?
What is the equation of the line that passes through the point (-5,2) and has a slope of 45 ?
Этап 1
Найдем значение b, используя уравнение прямой.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем b с помощью уравнения прямой.
y=mx+b
Этап 1.2
Подставим значение m в уравнение.
y=(45)x+b
Этап 1.3
Подставим значение x в уравнение.
y=(45)(-5)+b
Этап 1.4
Подставим значение y в уравнение.
2=(45)(-5)+b
Этап 1.5
Найдем значение b.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Перепишем уравнение в виде 45-5+b=2.
45-5+b=2
Этап 1.5.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Сократим общий множитель 5.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1.1
Вынесем множитель 5 из -5.
45(5(-1))+b=2
Этап 1.5.2.1.2
Сократим общий множитель.
45(5-1)+b=2
Этап 1.5.2.1.3
Перепишем это выражение.
4-1+b=2
4-1+b=2
Этап 1.5.2.2
Умножим 4 на -1.
-4+b=2
-4+b=2
Этап 1.5.3
Перенесем все члены без b в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.5.3.1
Добавим 4 к обеим частям уравнения.
b=2+4
Этап 1.5.3.2
Добавим 2 и 4.
b=6
b=6
b=6
b=6
Этап 2
Теперь, когда известны значения m (углового коэффициента) и b (координат точки пересечения с осью y), подставим их в y=mx+b, чтобы найти уравнение прямой.
y=45x+6
Этап 3
 [x2  12  π  xdx ]