Введите задачу...
Алгебра Примеры
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Перемножим экспоненты в .
Этап 3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.1.2
Упростим.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Перепишем в виде .
Этап 3.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.3.1.2.1
Применим свойство дистрибутивности.
Этап 3.3.1.2.2
Применим свойство дистрибутивности.
Этап 3.3.1.2.3
Применим свойство дистрибутивности.
Этап 3.3.1.3
Упростим и объединим подобные члены.
Этап 3.3.1.3.1
Упростим каждый член.
Этап 3.3.1.3.1.1
Умножим на .
Этап 3.3.1.3.1.2
Умножим на .
Этап 3.3.1.3.1.3
Умножим на .
Этап 3.3.1.3.1.4
Умножим на .
Этап 3.3.1.3.2
Добавим и .
Этап 4
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Перенесем все члены в левую часть уравнения и упростим.
Этап 4.3.1
Вычтем из обеих частей уравнения.
Этап 4.3.2
Вычтем из .
Этап 4.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.6
Упростим.
Этап 4.6.1
Упростим числитель.
Этап 4.6.1.1
Единица в любой степени равна единице.
Этап 4.6.1.2
Умножим .
Этап 4.6.1.2.1
Умножим на .
Этап 4.6.1.2.2
Умножим на .
Этап 4.6.1.3
Добавим и .
Этап 4.6.2
Умножим на .
Этап 4.7
Окончательный ответ является комбинацией обоих решений.
Этап 5
Исключим решения, которые не делают истинным.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: