Алгебра Примеры

Определить нули и их кратности f(x)=(x+7)^2(2x+1)(x-4)^3
Этап 1
Приравняем к .
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.2
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Приравняем к .
Этап 2.2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Приравняем к .
Этап 2.2.2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Вычтем из обеих частей уравнения.
Этап 2.3.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.1
Разделим каждый член на .
Этап 2.3.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.2.1.1
Сократим общий множитель.
Этап 2.3.2.2.2.1.2
Разделим на .
Этап 2.3.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Приравняем к .
Этап 2.4.2.2
Добавим к обеим частям уравнения.
Этап 2.5
Окончательным решением являются все значения, при которых верно. Кратность корня ― это количество появлений этого корня.
(кратно )
(кратно )
(кратно )
(кратно )
(кратно )
(кратно )
Этап 3