Алгебра Примеры

Решить с помощью дополнения до полного квадрата x^2+1/3x=4
Этап 1
Объединим и .
Этап 2
Чтобы получить квадратный трехчлен в левой части уравнение, найдем значение, равное квадрату половины .
Этап 3
Прибавим это слагаемое к каждой части уравнения.
Этап 4
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Применим правило умножения к .
Этап 4.1.1.2
Единица в любой степени равна единице.
Этап 4.1.1.3
Возведем в степень .
Этап 4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1.1
Применим правило умножения к .
Этап 4.2.1.1.2
Единица в любой степени равна единице.
Этап 4.2.1.1.3
Возведем в степень .
Этап 4.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.1.3
Объединим и .
Этап 4.2.1.4
Объединим числители над общим знаменателем.
Этап 4.2.1.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.2.1.5.1
Умножим на .
Этап 4.2.1.5.2
Добавим и .
Этап 5
Разложим полный квадрат трехчлена на .
Этап 6
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Перепишем в виде .
Этап 6.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Перепишем в виде .
Этап 6.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.3
Вычтем из обеих частей уравнения.
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: