Алгебра Примеры

Risolvere per x x^4-4x^2+2=0
Этап 1
Подставим в уравнение. Это упростит использование формулы для корней квадратного уравнения.
Этап 2
Используем формулу для нахождения корней квадратного уравнения.
Этап 3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Умножим на .
Этап 4.1.3
Вычтем из .
Этап 4.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Вынесем множитель из .
Этап 4.1.4.2
Перепишем в виде .
Этап 4.1.5
Вынесем члены из-под знака корня.
Этап 4.2
Умножим на .
Этап 4.3
Упростим .
Этап 5
Окончательный ответ является комбинацией обоих решений.
Этап 6
Подставим вещественное значение обратно в решенное уравнение.
Этап 7
Решим первое уравнение относительно .
Этап 8
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 8.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 8.2
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сначала с помощью положительного значения найдем первое решение.
Этап 8.2.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 8.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 9
Решим второе уравнение относительно .
Этап 10
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Избавимся от скобок.
Этап 10.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 10.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 10.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 10.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 10.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 11
Решением является .
Этап 12
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: