Алгебра Примеры

Risolvere per x x+3 = square root of -20+12x+3
Этап 1
Поскольку радикал находится в правой части уравнения, поменяем стороны, чтобы он оказался в левой части.
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.1.2
Добавим и .
Этап 3.2.1.3
Упростим.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перепишем в виде .
Этап 3.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Применим свойство дистрибутивности.
Этап 3.3.1.2.2
Применим свойство дистрибутивности.
Этап 3.3.1.2.3
Применим свойство дистрибутивности.
Этап 3.3.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1.1
Умножим на .
Этап 3.3.1.3.1.2
Перенесем влево от .
Этап 3.3.1.3.1.3
Умножим на .
Этап 3.3.1.3.2
Добавим и .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Добавим к обеим частям уравнения.
Этап 4.3.2
Добавим и .
Этап 4.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.6.1.1
Возведем в степень .
Этап 4.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.6.1.2.1
Умножим на .
Этап 4.6.1.2.2
Умножим на .
Этап 4.6.1.3
Вычтем из .
Этап 4.6.1.4
Перепишем в виде .
Этап 4.6.1.5
Перепишем в виде .
Этап 4.6.1.6
Перепишем в виде .
Этап 4.6.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.6.1.7.1
Вынесем множитель из .
Этап 4.6.1.7.2
Перепишем в виде .
Этап 4.6.1.8
Вынесем члены из-под знака корня.
Этап 4.6.1.9
Перенесем влево от .
Этап 4.6.2
Умножим на .
Этап 4.6.3
Упростим .
Этап 4.7
Окончательный ответ является комбинацией обоих решений.