Алгебра Примеры

Risolvere la Disuguaglianza per x x^3>x^2
Этап 1
Вычтем из обеих частей неравенства.
Этап 2
Преобразуем неравенство в уравнение.
Этап 3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Перепишем в виде .
Этап 5.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2.2.3
Плюс или минус равно .
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Добавим к обеим частям уравнения.
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8
Решение состоит из всех истинных интервалов.
Этап 9
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 10