Алгебра Примеры

Risolvere per x -2 квадратный корень из x+3=-x-4
Этап 1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Применим правило умножения к .
Этап 2.2.1.2
Возведем в степень .
Этап 2.2.1.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.3.2.1
Сократим общий множитель.
Этап 2.2.1.3.2.2
Перепишем это выражение.
Этап 2.2.1.4
Упростим.
Этап 2.2.1.5
Применим свойство дистрибутивности.
Этап 2.2.1.6
Умножим на .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем в виде .
Этап 2.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.3.1.2.1
Применим свойство дистрибутивности.
Этап 2.3.1.2.2
Применим свойство дистрибутивности.
Этап 2.3.1.2.3
Применим свойство дистрибутивности.
Этап 2.3.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.1.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.3.1.3.1.2.1
Перенесем .
Этап 2.3.1.3.1.2.2
Умножим на .
Этап 2.3.1.3.1.3
Умножим на .
Этап 2.3.1.3.1.4
Умножим на .
Этап 2.3.1.3.1.5
Умножим на .
Этап 2.3.1.3.1.6
Умножим на .
Этап 2.3.1.3.1.7
Умножим на .
Этап 2.3.1.3.2
Добавим и .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 3.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вычтем из обеих частей уравнения.
Этап 3.2.2
Вычтем из .
Этап 3.3
Вычтем из обеих частей уравнения.
Этап 3.4
Вычтем из .
Этап 3.5
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Перепишем в виде .
Этап 3.5.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 3.5.3
Перепишем многочлен.
Этап 3.5.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 3.6
Приравняем к .
Этап 3.7
Вычтем из обеих частей уравнения.