Алгебра Примеры

Преобразуйте в Полярную Систему Координат 3y-y^2=x^2
Этап 1
Так как , заменим на .
Этап 2
Так как , заменим на .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Упростим левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Применим правило умножения к .
Этап 3.2.1.1.2
Применим правило умножения к .
Этап 3.2.1.2
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.1
Вынесем множитель из .
Этап 3.2.1.2.2
Вынесем множитель из .
Этап 3.2.1.2.3
Вынесем множитель из .
Этап 3.2.2
Применим формулу Пифагора.
Этап 3.2.3
Умножим на .
Этап 3.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Вынесем множитель из .
Этап 3.3.2
Вынесем множитель из .
Этап 3.3.3
Вынесем множитель из .
Этап 3.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.5
Приравняем к .
Этап 3.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.2.1
Вычтем из обеих частей уравнения.
Этап 3.6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.1
Разделим каждый член на .
Этап 3.6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.6.2.2.2.2
Разделим на .
Этап 3.6.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.3.1
Вынесем знак минуса из знаменателя .
Этап 3.6.2.2.3.2
Перепишем в виде .
Этап 3.6.2.2.3.3
Умножим на .
Этап 3.7
Окончательным решением являются все значения, при которых верно.