Алгебра Примеры

Найти разрывы графика (x-1)/(2x^2-22x+20)
Этап 1
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.4
Вынесем множитель из .
Этап 1.1.5
Вынесем множитель из .
Этап 1.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2
Избавимся от ненужных скобок.
Этап 2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1
Сократим общий множитель.
Этап 2.2
Перепишем это выражение.
Этап 3
Чтобы найти точки разрыва, рассмотрим в знаменателе множители, которые были сокращены.
Этап 4
Чтобы найти координаты точек разрыва, приравняем все сокращенные множители к , решим и подставим найденные значения обратно в .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 4.3
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо , чтобы найти -координату разрыва.
Этап 4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Вычтем из .
Этап 4.3.2.2
Умножим на .
Этап 4.3.2.3
Вынесем знак минуса перед дробью.
Этап 4.4
Разрывы в графике — точки, в которых любой из сокращенных множителей равен .
Этап 5