Алгебра Примеры

Найти уравнение при помощи формулы пучка прямых (-2,6) and (1,1)
и
Этап 1
Найдем угловой коэффициент прямой, соединяющей и , используя выражение , то есть отношение изменения к изменению .
Нажмите для увеличения количества этапов...
Этап 1.1
Угловой коэффициент равен отношению изменения к изменению или отношению приращения функции к приращению аргумента.
Этап 1.2
Изменение в равно разности координат x (также называется разностью абсцисс), а изменение в равно разности координат y (также называется разностью ординат).
Этап 1.3
Подставим значения и в уравнение, чтобы найти угловой коэффициент.
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Умножим на .
Этап 1.4.1.2
Вычтем из .
Этап 1.4.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Умножим на .
Этап 1.4.2.2
Добавим и .
Этап 1.4.3
Вынесем знак минуса перед дробью.
Этап 2
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Перепишем.
Этап 4.1.2
Упростим путем добавления нулей.
Этап 4.1.3
Применим свойство дистрибутивности.
Этап 4.1.4
Объединим и .
Этап 4.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.1.5.1
Умножим на .
Этап 4.1.5.2
Объединим и .
Этап 4.1.5.3
Умножим на .
Этап 4.1.6
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.6.1
Перенесем влево от .
Этап 4.1.6.2
Вынесем знак минуса перед дробью.
Этап 4.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.3
Объединим и .
Этап 4.2.4
Объединим числители над общим знаменателем.
Этап 4.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.2.5.1
Умножим на .
Этап 4.2.5.2
Добавим и .
Этап 5
Изменим порядок членов.
Этап 6
Избавимся от скобок.
Этап 7
Перечислим различные формы данного уравнения.
Уравнение прямой с угловым коэффициентом:
Уравнение прямой с угловым коэффициентом и заданной точкой:
Этап 8