Алгебра Примеры

График y=(-10+5s)(-9+9s)
Этап 1
Найдем свойства заданной параболы.
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем уравнение в форме с выделенной вершиной.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.1.1.1.2
Применим свойство дистрибутивности.
Этап 1.1.1.1.1.3
Применим свойство дистрибутивности.
Этап 1.1.1.1.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.2.1.1
Умножим на .
Этап 1.1.1.1.2.1.2
Умножим на .
Этап 1.1.1.1.2.1.3
Умножим на .
Этап 1.1.1.1.2.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.1.1.2.1.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.2.1.5.1
Перенесем .
Этап 1.1.1.1.2.1.5.2
Умножим на .
Этап 1.1.1.1.2.1.6
Умножим на .
Этап 1.1.1.1.2.2
Вычтем из .
Этап 1.1.1.1.3
Перенесем .
Этап 1.1.1.1.4
Изменим порядок и .
Этап 1.1.1.2
Применим форму , чтобы найти значения , и .
Этап 1.1.1.3
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.1.1.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.1
Подставим значения и в формулу .
Этап 1.1.1.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.2.1.1
Вынесем множитель из .
Этап 1.1.1.4.2.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.2.1.2.1
Вынесем множитель из .
Этап 1.1.1.4.2.1.2.2
Сократим общий множитель.
Этап 1.1.1.4.2.1.2.3
Перепишем это выражение.
Этап 1.1.1.4.2.2
Вынесем знак минуса перед дробью.
Этап 1.1.1.5
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.1.1.5.1
Подставим значения , и в формулу .
Этап 1.1.1.5.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.1.5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.1.5.2.1.1
Возведем в степень .
Этап 1.1.1.5.2.1.2
Умножим на .
Этап 1.1.1.5.2.1.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.5.2.1.3.1
Вынесем множитель из .
Этап 1.1.1.5.2.1.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.1.5.2.1.3.2.1
Вынесем множитель из .
Этап 1.1.1.5.2.1.3.2.2
Сократим общий множитель.
Этап 1.1.1.5.2.1.3.2.3
Перепишем это выражение.
Этап 1.1.1.5.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.1.5.2.3
Объединим и .
Этап 1.1.1.5.2.4
Объединим числители над общим знаменателем.
Этап 1.1.1.5.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.1.5.2.5.1
Умножим на .
Этап 1.1.1.5.2.5.2
Вычтем из .
Этап 1.1.1.5.2.6
Вынесем знак минуса перед дробью.
Этап 1.1.1.6
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.1.2
Приравняем к новой правой части.
Этап 1.2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 1.3
Поскольку имеет положительное значение, ветви параболы направлены вверх.
вверх
Этап 1.4
Найдем вершину .
Этап 1.5
Найдем , расстояние от вершины до фокуса.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 1.5.2
Подставим значение в формулу.
Этап 1.5.3
Умножим на .
Этап 1.6
Найдем фокус.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Фокус параболы можно найти, добавив к координате y , если ветви параболы направлены вверх или вниз.
Этап 1.6.2
Подставим известные значения , и в формулу и упростим.
Этап 1.7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
Этап 1.8
Найдем направляющую.
Нажмите для увеличения количества этапов...
Этап 1.8.1
Директриса параболы ― это горизонтальная прямая, которую можно найти вычитанием из y-координаты вершины , если ветви параболы направлены вверх или вниз.
Этап 1.8.2
Подставим известные значения и в формулу и упростим.
Этап 1.9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 2
Выберем несколько значений и подставим их в уравнение, чтобы найти соответствующие значения . Значения следует выбрать вблизи вершины.
Нажмите для увеличения количества этапов...
Этап 2.1
Заменим в этом выражении переменную на .
Этап 2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Умножим на .
Этап 2.2.2
Добавим и .
Этап 2.2.3
Умножим на .
Этап 2.2.4
Добавим и .
Этап 2.2.5
Умножим на .
Этап 2.2.6
Окончательный ответ: .
Этап 2.3
Значение при равно .
Этап 2.4
Построим график параболы, используя ее свойства и выбранные точки.
Этап 3
Построим график параболы, используя ее свойства и выбранные точки.
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 4