Алгебра Примеры

Risolvere per x ( квадратный корень из 6x+4-1)/4=x
Этап 1
Умножим обе части на .
Этап 2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.1.1.1
Вынесем множитель из .
Этап 2.1.1.1.2
Вынесем множитель из .
Этап 2.1.1.1.3
Вынесем множитель из .
Этап 2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.1.2.1
Сократим общий множитель.
Этап 2.1.1.2.2
Перепишем это выражение.
Этап 2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перенесем влево от .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Добавим к обеим частям уравнения.
Этап 3.2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3.3
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.1
С помощью запишем в виде .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1.2.1
Сократим общий множитель.
Этап 3.3.2.1.1.2.2
Перепишем это выражение.
Этап 3.3.2.1.2
Применим свойство дистрибутивности.
Этап 3.3.2.1.3
Умножим.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.3.1
Умножим на .
Этап 3.3.2.1.3.2
Умножим на .
Этап 3.3.2.1.3.3
Упростим.
Этап 3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.1
Перепишем в виде .
Этап 3.3.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.2.1
Применим свойство дистрибутивности.
Этап 3.3.3.1.2.2
Применим свойство дистрибутивности.
Этап 3.3.3.1.2.3
Применим свойство дистрибутивности.
Этап 3.3.3.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.3.1.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.3.1.2.1
Перенесем .
Этап 3.3.3.1.3.1.2.2
Умножим на .
Этап 3.3.3.1.3.1.3
Умножим на .
Этап 3.3.3.1.3.1.4
Умножим на .
Этап 3.3.3.1.3.1.5
Умножим на .
Этап 3.3.3.1.3.1.6
Умножим на .
Этап 3.3.3.1.3.2
Добавим и .
Этап 3.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 3.4.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Вычтем из обеих частей уравнения.
Этап 3.4.2.2
Вычтем из .
Этап 3.4.3
Вычтем из обеих частей уравнения.
Этап 3.4.4
Вычтем из .
Этап 3.4.5
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.4.5.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.4.5.1.1
Вынесем множитель из .
Этап 3.4.5.1.2
Запишем как плюс
Этап 3.4.5.1.3
Применим свойство дистрибутивности.
Этап 3.4.5.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.4.5.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.4.5.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.4.5.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.4.6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.4.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.7.1
Приравняем к .
Этап 3.4.7.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.7.2.1
Добавим к обеим частям уравнения.
Этап 3.4.7.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.7.2.2.1
Разделим каждый член на .
Этап 3.4.7.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.7.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.7.2.2.2.1.1
Сократим общий множитель.
Этап 3.4.7.2.2.2.1.2
Разделим на .
Этап 3.4.8
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.8.1
Приравняем к .
Этап 3.4.8.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.8.2.1
Вычтем из обеих частей уравнения.
Этап 3.4.8.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.8.2.2.1
Разделим каждый член на .
Этап 3.4.8.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.8.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.8.2.2.2.1.1
Сократим общий множитель.
Этап 3.4.8.2.2.2.1.2
Разделим на .
Этап 3.4.8.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.8.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 3.4.9
Окончательным решением являются все значения, при которых верно.
Этап 4
Исключим решения, которые не делают истинным.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: