Алгебра Примеры

Risolvere la Disuguaglianza per x 9- квадратный корень из x+4<=6
Этап 1
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей неравенства.
Этап 1.2
Вычтем из .
Этап 2
Чтобы избавиться от радикала в левой части неравенства, возведем обе части неравенства в квадрат.
Этап 3
Упростим каждую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Применим правило умножения к .
Этап 3.2.1.2
Возведем в степень .
Этап 3.2.1.3
Умножим на .
Этап 3.2.1.4
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.2.1.4.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.4.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.4.2.1
Сократим общий множитель.
Этап 3.2.1.4.2.2
Перепишем это выражение.
Этап 3.2.1.5
Упростим.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Возведем в степень .
Этап 4
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей неравенства.
Этап 4.2
Вычтем из .
Этап 5
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 5.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 5.2
Вычтем из обеих частей неравенства.
Этап 5.3
Область определения ― это все значения , при которых выражение определено.
Этап 6
Решение состоит из всех истинных интервалов.
Этап 7
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 8