Алгебра Примеры

Risolvere la Disuguaglianza per x x^3-27x<0
Этап 1
Преобразуем неравенство в уравнение.
Этап 2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Этап 2.2
Вынесем множитель из .
Этап 2.3
Вынесем множитель из .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.2.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.2.3.1.1
Вынесем множитель из .
Этап 5.2.3.1.2
Перепишем в виде .
Этап 5.2.3.2
Вынесем члены из-под знака корня.
Этап 5.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7
Используем каждый корень для создания контрольных интервалов.
Этап 8
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 8.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 8.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.1.2
Заменим на в исходном неравенстве.
Этап 8.1.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 8.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.2.2
Заменим на в исходном неравенстве.
Этап 8.2.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 8.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.3.2
Заменим на в исходном неравенстве.
Этап 8.3.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 8.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 8.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.4.2
Заменим на в исходном неравенстве.
Этап 8.4.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 8.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Ложь
Истина
Ложь
Истина
Ложь
Этап 9
Решение состоит из всех истинных интервалов.
или
Этап 10
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 11