Алгебра Примеры

Risolvere per m m+7+(m^2-6m-16)/m=(8m-16)/m
Этап 1
Разложим на множители каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.3
Вынесем множитель из .
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Умножим на .
Этап 3.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.1
Сократим общий множитель.
Этап 3.2.1.2.2
Перепишем это выражение.
Этап 3.2.1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.2.1.3.1
Применим свойство дистрибутивности.
Этап 3.2.1.3.2
Применим свойство дистрибутивности.
Этап 3.2.1.3.3
Применим свойство дистрибутивности.
Этап 3.2.1.4
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.2.1.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.4.1.1
Умножим на .
Этап 3.2.1.4.1.2
Перенесем влево от .
Этап 3.2.1.4.1.3
Умножим на .
Этап 3.2.1.4.2
Вычтем из .
Этап 3.2.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Добавим и .
Этап 3.2.2.2
Вычтем из .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Сократим общий множитель.
Этап 3.3.1.2
Перепишем это выражение.
Этап 3.3.2
Применим свойство дистрибутивности.
Этап 3.3.3
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 4.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Добавим и .
Этап 4.3.2
Добавим и .
Этап 4.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Вынесем множитель из .
Этап 4.4.2
Вынесем множитель из .
Этап 4.4.3
Вынесем множитель из .
Этап 4.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.6
Приравняем к .
Этап 4.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.7.1
Приравняем к .
Этап 4.7.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.7.2.1
Добавим к обеим частям уравнения.
Этап 4.7.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.7.2.2.1
Разделим каждый член на .
Этап 4.7.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.7.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.7.2.2.2.1.1
Сократим общий множитель.
Этап 4.7.2.2.2.1.2
Разделим на .
Этап 4.8
Окончательным решением являются все значения, при которых верно.
Этап 5
Исключим решения, которые не делают истинным.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: