Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 1.2
Решим уравнение.
Этап 1.2.1
Перепишем уравнение в виде .
Этап 1.2.2
Чтобы избавиться от знака корня в левой части уравнения, возведем обе части в степень .
Этап 1.2.3
Упростим каждую часть уравнения.
Этап 1.2.3.1
С помощью запишем в виде .
Этап 1.2.3.2
Упростим левую часть.
Этап 1.2.3.2.1
Упростим .
Этап 1.2.3.2.1.1
Перемножим экспоненты в .
Этап 1.2.3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 1.2.3.2.1.1.2
Сократим общий множитель .
Этап 1.2.3.2.1.1.2.1
Сократим общий множитель.
Этап 1.2.3.2.1.1.2.2
Перепишем это выражение.
Этап 1.2.3.2.1.2
Упростим.
Этап 1.2.3.3
Упростим правую часть.
Этап 1.2.3.3.1
Возведение в любую положительную степень дает .
Этап 1.2.4
Решим относительно .
Этап 1.2.4.1
Вычтем из обеих частей уравнения.
Этап 1.2.4.2
Разделим каждый член на и упростим.
Этап 1.2.4.2.1
Разделим каждый член на .
Этап 1.2.4.2.2
Упростим левую часть.
Этап 1.2.4.2.2.1
Сократим общий множитель .
Этап 1.2.4.2.2.1.1
Сократим общий множитель.
Этап 1.2.4.2.2.1.2
Разделим на .
Этап 1.2.4.2.3
Упростим правую часть.
Этап 1.2.4.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.2.4.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2.4.4
Упростим .
Этап 1.2.4.4.1
Перепишем в виде .
Этап 1.2.4.4.1.1
Перепишем в виде .
Этап 1.2.4.4.1.2
Перепишем в виде .
Этап 1.2.4.4.2
Вынесем члены из-под знака корня.
Этап 1.2.4.4.3
Единица в любой степени равна единице.
Этап 1.2.4.4.4
Перепишем в виде .
Этап 1.2.4.4.5
Любой корень из равен .
Этап 1.2.4.4.6
Умножим на .
Этап 1.2.4.4.7
Объединим и упростим знаменатель.
Этап 1.2.4.4.7.1
Умножим на .
Этап 1.2.4.4.7.2
Возведем в степень .
Этап 1.2.4.4.7.3
Возведем в степень .
Этап 1.2.4.4.7.4
Применим правило степени для объединения показателей.
Этап 1.2.4.4.7.5
Добавим и .
Этап 1.2.4.4.7.6
Перепишем в виде .
Этап 1.2.4.4.7.6.1
С помощью запишем в виде .
Этап 1.2.4.4.7.6.2
Применим правило степени и перемножим показатели, .
Этап 1.2.4.4.7.6.3
Объединим и .
Этап 1.2.4.4.7.6.4
Сократим общий множитель .
Этап 1.2.4.4.7.6.4.1
Сократим общий множитель.
Этап 1.2.4.4.7.6.4.2
Перепишем это выражение.
Этап 1.2.4.4.7.6.5
Найдем экспоненту.
Этап 1.2.4.4.8
Объединим и .
Этап 1.2.4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.3
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
точки пересечения с осью x:
точки пересечения с осью x:
Этап 2
Этап 2.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 2.2
Упростим .
Этап 2.2.1
Возведение в любую положительную степень дает .
Этап 2.2.2
Умножим на .
Этап 2.2.3
Добавим и .
Этап 2.2.4
Любой корень из равен .
Этап 2.3
Точки пересечения с осью y в форме точки.
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 3
Перечислим пересечения.
точки пересечения с осью x:
Точки пересечения с осью y:
Этап 4