Алгебра Примеры

Risolvere per x (3x)/(x+2)+2/(x-1)=5/(x^2+x-2)
Этап 1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.5
Множителем является само значение .
встречается раз.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Сократим общий множитель.
Этап 3.2.1.1.2
Перепишем это выражение.
Этап 3.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.2.1.3.1
Перенесем .
Этап 3.2.1.3.2
Умножим на .
Этап 3.2.1.4
Умножим на .
Этап 3.2.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.5.1
Вынесем множитель из .
Этап 3.2.1.5.2
Сократим общий множитель.
Этап 3.2.1.5.3
Перепишем это выражение.
Этап 3.2.1.6
Применим свойство дистрибутивности.
Этап 3.2.1.7
Умножим на .
Этап 3.2.2
Добавим и .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Сократим общий множитель.
Этап 3.3.1.3
Перепишем это выражение.
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.4.1.1
Возведем в степень .
Этап 4.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.4.1.2.1
Умножим на .
Этап 4.4.1.2.2
Умножим на .
Этап 4.4.1.3
Добавим и .
Этап 4.4.2
Умножим на .
Этап 4.5
Окончательный ответ является комбинацией обоих решений.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: