Введите задачу...
Алгебра Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Перепишем в виде степенного выражения.
Этап 3
Подставим вместо .
Этап 4
Перенесем .
Этап 5
Этап 5.1
Разложим на множители методом группировки
Этап 5.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 5.1.1.1
Вынесем множитель из .
Этап 5.1.1.2
Запишем как плюс
Этап 5.1.1.3
Применим свойство дистрибутивности.
Этап 5.1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 5.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 5.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 5.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.3
Приравняем к , затем решим относительно .
Этап 5.3.1
Приравняем к .
Этап 5.3.2
Решим относительно .
Этап 5.3.2.1
Вычтем из обеих частей уравнения.
Этап 5.3.2.2
Разделим каждый член на и упростим.
Этап 5.3.2.2.1
Разделим каждый член на .
Этап 5.3.2.2.2
Упростим левую часть.
Этап 5.3.2.2.2.1
Сократим общий множитель .
Этап 5.3.2.2.2.1.1
Сократим общий множитель.
Этап 5.3.2.2.2.1.2
Разделим на .
Этап 5.3.2.2.3
Упростим правую часть.
Этап 5.3.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 5.4
Приравняем к , затем решим относительно .
Этап 5.4.1
Приравняем к .
Этап 5.4.2
Добавим к обеим частям уравнения.
Этап 5.5
Окончательным решением являются все значения, при которых верно.
Этап 6
Подставим вместо в .
Этап 7
Этап 7.1
Перепишем уравнение в виде .
Этап 7.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 7.3
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 7.4
Нет решения для
Нет решения
Нет решения
Этап 8
Подставим вместо в .
Этап 9
Этап 9.1
Перепишем уравнение в виде .
Этап 9.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 9.3
Развернем левую часть.
Этап 9.3.1
Развернем , вынося из логарифма.
Этап 9.3.2
Натуральный логарифм равен .
Этап 9.3.3
Умножим на .
Этап 10
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: