Алгебра Примеры

Risolvere per x 2/(3x)-5/(6x)=1/(x+1)
Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Поскольку содержит как числа, так и переменные, для нахождения наименьшего общего кратного требуется четыре этапа. Найдем наименьшее общее кратное для числовой, переменной и составной переменной частей. Затем перемножим их.
Этапы поиска НОК для :
1. Найдем НОК для числовой части .
2. Найдем НОК для переменной части .
3. Найдем НОК для составной переменной части .
4. Перемножим все НОК.
Этап 1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.4
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 1.5
У есть множители: и .
Этап 1.6
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.8
Умножим на .
Этап 1.9
Множителем является само значение .
встречается раз.
Этап 1.10
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.11
Множителем является само значение .
встречается раз.
Этап 1.12
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.13
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Вынесем множитель из .
Этап 2.2.1.2.2
Вынесем множитель из .
Этап 2.2.1.2.3
Сократим общий множитель.
Этап 2.2.1.2.4
Перепишем это выражение.
Этап 2.2.1.3
Объединим и .
Этап 2.2.1.4
Умножим на .
Этап 2.2.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.5.1
Сократим общий множитель.
Этап 2.2.1.5.2
Перепишем это выражение.
Этап 2.2.1.6
Применим свойство дистрибутивности.
Этап 2.2.1.7
Умножим на .
Этап 2.2.1.8
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.8.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.2.1.8.2
Сократим общий множитель.
Этап 2.2.1.8.3
Перепишем это выражение.
Этап 2.2.1.9
Применим свойство дистрибутивности.
Этап 2.2.1.10
Умножим на .
Этап 2.2.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Вычтем из .
Этап 2.2.2.2
Вычтем из .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.2
Объединим и .
Этап 2.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Вынесем множитель из .
Этап 2.3.3.2
Сократим общий множитель.
Этап 2.3.3.3
Перепишем это выражение.
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Вычтем из .
Этап 3.2
Добавим к обеим частям уравнения.
Этап 3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Вынесем знак минуса перед дробью.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: