Алгебра Примеры

Найти область определения и область значения f(x)=arcsin(cos(x))
Этап 1
Зададим аргумент в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Точное значение : .
Этап 2.3
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 2.4
Вычтем из .
Этап 2.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Период функции можно вычислить по формуле .
Этап 2.5.2
Заменим на в формуле периода.
Этап 2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.5.4
Разделим на .
Этап 2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 2.7
Используем каждый корень для создания контрольных интервалов.
Этап 2.8
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 2.8.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.8.1.2
Заменим на в исходном неравенстве.
Этап 2.8.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 2.8.2
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Истина
Этап 2.9
Решение состоит из всех истинных интервалов.
, для любого целого
, для любого целого
Этап 3
Зададим аргумент в меньшим или равным , чтобы узнать, где определено данное выражение.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Точное значение : .
Этап 4.3
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 4.4
Вычтем из .
Этап 4.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Период функции можно вычислить по формуле .
Этап 4.5.2
Заменим на в формуле периода.
Этап 4.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.5.4
Разделим на .
Этап 4.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 4.7
Объединим ответы.
, для любого целого
Этап 4.8
Используем каждый корень для создания контрольных интервалов.
Этап 4.9
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 4.9.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 4.9.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 4.9.1.2
Заменим на в исходном неравенстве.
Этап 4.9.1.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 4.9.2
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Истина
Этап 4.10
Решение состоит из всех истинных интервалов.
, для любого целого
, для любого целого
Этап 5
Область определения ― это все значения , при которых выражение определено.
Обозначение построения множества:
, для любого целого
Этап 6
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Обозначение построения множества:
Этап 7
Определим область определения и множество значений.
Область определения: , для любого целого
Диапазон:
Этап 8