Алгебра Примеры

Этап 1
Добавим к обеим частям неравенства.
Этап 2
Объединим и .
Этап 3
Умножим обе части на .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Сократим общий множитель.
Этап 4.1.1.2
Перепишем это выражение.
Этап 4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим на .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Возьмем указанный корень от обеих частей неравенства, чтобы исключить член со степенью в левой части.
Этап 5.2
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Вынесем члены из-под знака корня.
Этап 5.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1
Перепишем в виде .
Этап 5.2.2.1.2
Вынесем члены из-под знака корня.
Этап 5.2.2.1.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.3
Запишем в виде кусочной функции.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Чтобы определить интервал для первого куска, найдем, на каком участке абсолютное значение неотрицательно.
Этап 5.3.2
Добавим к обеим частям неравенства.
Этап 5.3.3
В части, где принимает неотрицательные значения, исключим абсолютное значение.
Этап 5.3.4
Чтобы определить интервал для второго куска, найдем, на каком участке абсолютное значение отрицательно.
Этап 5.3.5
Добавим к обеим частям неравенства.
Этап 5.3.6
В части, где принимает отрицательные значения, исключим абсолютное значение и умножим на .
Этап 5.3.7
Запишем в виде кусочной функции.
Этап 5.3.8
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.8.1
Применим свойство дистрибутивности.
Этап 5.3.8.2
Умножим на .
Этап 5.4
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Добавим к обеим частям неравенства.
Этап 5.4.2
Добавим и .
Этап 5.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 5.5.1.1
Вычтем из обеих частей неравенства.
Этап 5.5.1.2
Вычтем из .
Этап 5.5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.5.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 5.5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.5.2.2.2
Разделим на .
Этап 5.5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.2.3.1
Разделим на .
Этап 5.6
Найдем объединение решений.
или
или
Этап 6