Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Чтобы определить интервал для первого куска, найдем, на каком участке абсолютное значение неотрицательно.
Этап 1.2
Добавим к обеим частям неравенства.
Этап 1.3
В части, где принимает неотрицательные значения, исключим абсолютное значение.
Этап 1.4
Чтобы определить интервал для второго куска, найдем, на каком участке абсолютное значение отрицательно.
Этап 1.5
Добавим к обеим частям неравенства.
Этап 1.6
В части, где принимает отрицательные значения, исключим абсолютное значение и умножим на .
Этап 1.7
Запишем в виде кусочной функции.
Этап 1.8
Добавим и .
Этап 1.9
Упростим .
Этап 1.9.1
Упростим каждый член.
Этап 1.9.1.1
Применим свойство дистрибутивности.
Этап 1.9.1.2
Умножим на .
Этап 1.9.2
Добавим и .
Этап 2
Этап 2.1
Перенесем все члены без в правую часть неравенства.
Этап 2.1.1
Вычтем из обеих частей неравенства.
Этап 2.1.2
Вычтем из .
Этап 2.2
Найдем пересечение и .
Этап 3
Этап 3.1
Решим относительно .
Этап 3.1.1
Перенесем все члены без в правую часть неравенства.
Этап 3.1.1.1
Вычтем из обеих частей неравенства.
Этап 3.1.1.2
Вычтем из .
Этап 3.1.2
Разделим каждый член на и упростим.
Этап 3.1.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 3.1.2.2
Упростим левую часть.
Этап 3.1.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.2.2.2
Разделим на .
Этап 3.1.2.3
Упростим правую часть.
Этап 3.1.2.3.1
Разделим на .
Этап 3.2
Найдем пересечение и .
Этап 4
Найдем объединение решений.
Все вещественные числа
Этап 5
Результат можно представить в различном виде.
Все вещественные числа
Интервальное представление:
Этап 6