Алгебра Примеры

Risolvere per x логарифм x+1+ логарифм x-3 = логарифм 6x^2-6
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Применим свойство дистрибутивности.
Этап 1.2.3
Применим свойство дистрибутивности.
Этап 1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Умножим на .
Этап 1.3.1.2
Перенесем влево от .
Этап 1.3.1.3
Умножим на .
Этап 1.3.1.4
Умножим на .
Этап 1.3.2
Добавим и .
Этап 2
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Вычтем из .
Этап 3.2
Добавим к обеим частям уравнения.
Этап 3.3
Добавим и .
Этап 3.4
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Вынесем множитель из .
Этап 3.4.1.2
Вынесем множитель из .
Этап 3.4.1.3
Перепишем в виде .
Этап 3.4.1.4
Вынесем множитель из .
Этап 3.4.1.5
Вынесем множитель из .
Этап 3.4.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1.1
Вынесем множитель из .
Этап 3.4.2.1.1.2
Запишем как плюс
Этап 3.4.2.1.1.3
Применим свойство дистрибутивности.
Этап 3.4.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.4.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.4.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.4.2.2
Избавимся от ненужных скобок.
Этап 3.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.2.1
Добавим к обеим частям уравнения.
Этап 3.6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.1
Разделим каждый член на .
Этап 3.6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.2.1.1
Сократим общий множитель.
Этап 3.6.2.2.2.1.2
Разделим на .
Этап 3.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.7.1
Приравняем к .
Этап 3.7.2
Вычтем из обеих частей уравнения.
Этап 3.8
Окончательным решением являются все значения, при которых верно.
Этап 4
Исключим решения, которые не делают истинным.