Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
НОК единицы и любого выражения есть это выражение.
Этап 2
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Сократим общий множитель .
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Перепишем это выражение.
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Разделим каждый член на и упростим.
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Сократим общий множитель .
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4
Упростим .
Этап 3.4.1
Перепишем в виде .
Этап 3.4.2
Любой корень из равен .
Этап 3.4.3
Упростим знаменатель.
Этап 3.4.3.1
Перепишем в виде .
Этап 3.4.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Выпишем каждое выражение, чтобы найти решение для .
Этап 5
Этап 5.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 5.2
Упростим правую часть.
Этап 5.2.1
Точное значение : .
Этап 5.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 5.4
Упростим .
Этап 5.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.4.2
Объединим дроби.
Этап 5.4.2.1
Объединим и .
Этап 5.4.2.2
Объединим числители над общим знаменателем.
Этап 5.4.3
Упростим числитель.
Этап 5.4.3.1
Перенесем влево от .
Этап 5.4.3.2
Вычтем из .
Этап 5.5
Найдем период .
Этап 5.5.1
Период функции можно вычислить по формуле .
Этап 5.5.2
Заменим на в формуле периода.
Этап 5.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.5.4
Разделим на .
Этап 5.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 6
Этап 6.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2
Упростим правую часть.
Этап 6.2.1
Точное значение : .
Этап 6.3
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 6.4
Упростим выражение, чтобы найти второе решение.
Этап 6.4.1
Вычтем из .
Этап 6.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 6.5
Найдем период .
Этап 6.5.1
Период функции можно вычислить по формуле .
Этап 6.5.2
Заменим на в формуле периода.
Этап 6.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.5.4
Разделим на .
Этап 6.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 6.6.1
Добавим к , чтобы найти положительный угол.
Этап 6.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.6.3
Объединим дроби.
Этап 6.6.3.1
Объединим и .
Этап 6.6.3.2
Объединим числители над общим знаменателем.
Этап 6.6.4
Упростим числитель.
Этап 6.6.4.1
Умножим на .
Этап 6.6.4.2
Вычтем из .
Этап 6.6.5
Перечислим новые углы.
Этап 6.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 7
Перечислим все решения.
, для любого целого
Этап 8
Этап 8.1
Объединим и в .
, для любого целого
Этап 8.2
Объединим и в .
, для любого целого
, для любого целого