Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Разделим каждый член на и упростим.
Этап 1.2.1
Разделим каждый член на .
Этап 1.2.2
Упростим левую часть.
Этап 1.2.2.1
Сократим общий множитель .
Этап 1.2.2.1.1
Сократим общий множитель.
Этап 1.2.2.1.2
Разделим на .
Этап 2
Этап 2.1
Упростим каждый член.
Этап 2.1.1
Применим свойство дистрибутивности.
Этап 2.1.2
Умножим .
Этап 2.1.2.1
Объединим и .
Этап 2.1.2.2
Умножим на .
Этап 2.1.3
Умножим .
Этап 2.1.3.1
Объединим и .
Этап 2.1.3.2
Умножим на .
Этап 2.2
Найдем НОК знаменателей членов уравнения.
Этап 2.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part k,k.
Этап 2.2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
перечисляет простые множители каждого числа.
Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.2.6
Множителем является само значение .
k occurs time.
Этап 2.2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
k
k
Этап 2.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 2.3.1
Умножим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Упростим каждый член.
Этап 2.3.2.1.1
Сократим общий множитель .
Этап 2.3.2.1.1.1
Сократим общий множитель.
Этап 2.3.2.1.1.2
Перепишем это выражение.
Этап 2.3.2.1.2
Сократим общий множитель .
Этап 2.3.2.1.2.1
Сократим общий множитель.
Этап 2.3.2.1.2.2
Перепишем это выражение.
Этап 2.4
Решим уравнение.
Этап 2.4.1
Вычтем из обеих частей уравнения.
Этап 2.4.2
Вынесем множитель из .
Этап 2.4.2.1
Вынесем множитель из .
Этап 2.4.2.2
Вынесем множитель из .
Этап 2.4.2.3
Вынесем множитель из .
Этап 2.4.2.4
Умножим на .
Этап 2.4.3
Разделим каждый член на и упростим.
Этап 2.4.3.1
Разделим каждый член на .
Этап 2.4.3.2
Упростим левую часть.
Этап 2.4.3.2.1
Сократим общий множитель .
Этап 2.4.3.2.1.1
Сократим общий множитель.
Этап 2.4.3.2.1.2
Разделим на .
Этап 2.4.3.3
Упростим правую часть.
Этап 2.4.3.3.1
Объединим числители над общим знаменателем.
Этап 3
Этап 3.1
Упростим .
Этап 3.1.1
Объединим числители над общим знаменателем.
Этап 3.1.2
Объединим и .
Этап 3.1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.1.4
Упростим члены.
Этап 3.1.4.1
Объединим и .
Этап 3.1.4.2
Объединим числители над общим знаменателем.
Этап 3.1.5
Упростим числитель.
Этап 3.1.5.1
Применим свойство дистрибутивности.
Этап 3.1.5.2
Умножим на .
Этап 3.1.5.3
Умножим на .
Этап 3.1.5.4
Применим свойство дистрибутивности.
Этап 3.1.5.5
Умножим на .
Этап 3.1.5.6
Умножим на .
Этап 3.1.5.7
Вычтем из .
Этап 3.1.5.8
Добавим и .
Этап 3.1.5.9
Добавим и .
Этап 3.1.6
Умножим числитель на величину, обратную знаменателю.
Этап 3.1.7
Сократим общий множитель .
Этап 3.1.7.1
Сократим общий множитель.
Этап 3.1.7.2
Перепишем это выражение.