Алгебра Примеры

Найти разрывы графика (x^3-16x)/(-4x^2+4x+24)
Этап 1
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.2
Перепишем в виде .
Этап 1.3
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.3.2
Избавимся от ненужных скобок.
Этап 2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Вынесем множитель из .
Этап 2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Умножим на .
Этап 2.2.1.1.2
Запишем как плюс
Этап 2.2.1.1.3
Применим свойство дистрибутивности.
Этап 2.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.2.2
Избавимся от ненужных скобок.
Этап 3
Так как из знаменателя нельзя удалить ни один множитель, в графике нет разрывов.
Нет разрывов
Этап 4