Алгебра Примеры

Вычислить 1/2+1/(2x)=(x^2-7x+10)/(4x)
Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 2.5
У есть множители: и .
Этап 2.6
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
Умножим на .
Этап 2.9
Множителем является само значение .
встречается раз.
Этап 2.10
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.11
НОК представляет собой произведение числовой части и переменной части.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Вынесем множитель из .
Этап 3.2.2.2
Вынесем множитель из .
Этап 3.2.2.3
Сократим общий множитель.
Этап 3.2.2.4
Перепишем это выражение.
Этап 3.2.3
Объединим и .
Этап 3.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Сократим общий множитель.
Этап 3.2.4.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Вынесем множитель из .
Этап 3.3.1.2.2
Сократим общий множитель.
Этап 3.3.1.2.3
Перепишем это выражение.
Этап 3.3.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1
Сократим общий множитель.
Этап 3.3.1.3.2
Перепишем это выражение.
Этап 3.3.1.4
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.4.1
Применим свойство дистрибутивности.
Этап 3.3.1.4.2
Применим свойство дистрибутивности.
Этап 3.3.1.4.3
Применим свойство дистрибутивности.
Этап 3.3.1.5
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.3.1.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.5.1.1
Умножим на .
Этап 3.3.1.5.1.2
Перенесем влево от .
Этап 3.3.1.5.1.3
Умножим на .
Этап 3.3.1.5.2
Вычтем из .
Этап 3.3.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.6.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.1.6.2
Вынесем множитель из .
Этап 3.3.1.6.3
Сократим общий множитель.
Этап 3.3.1.6.4
Перепишем это выражение.
Этап 3.3.1.7
Умножим на .
Этап 3.3.2
Вычтем из .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Вычтем из .
Этап 4.4
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.4.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Добавим к обеим частям уравнения.
Этап 4.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.7.1
Приравняем к .
Этап 4.7.2
Добавим к обеим частям уравнения.
Этап 4.8
Окончательным решением являются все значения, при которых верно.