Алгебра Примеры

Определить корни (нули) x^4-10x^2=-9
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Пусть . Подставим вместо для всех.
Этап 2.3
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.4
Заменим все вхождения на .
Этап 2.5
Перепишем в виде .
Этап 2.6
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.7
Перепишем в виде .
Этап 2.8
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.8.2
Избавимся от ненужных скобок.
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Приравняем к .
Этап 7.2
Добавим к обеим частям уравнения.
Этап 8
Окончательным решением являются все значения, при которых верно.
Этап 9