Введите задачу...
Алгебра Примеры
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Добавим и .
Этап 3
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 3.4
Вынесем множитель из .
Этап 3.5
Вынесем множитель из .
Этап 4
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Этап 4.3.1
Разделим на .
Этап 5
Используем формулу для нахождения корней квадратного уравнения.
Этап 6
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 7
Этап 7.1
Упростим числитель.
Этап 7.1.1
Возведем в степень .
Этап 7.1.2
Умножим .
Этап 7.1.2.1
Умножим на .
Этап 7.1.2.2
Умножим на .
Этап 7.1.3
Вычтем из .
Этап 7.1.4
Перепишем в виде .
Этап 7.1.4.1
Вынесем множитель из .
Этап 7.1.4.2
Перепишем в виде .
Этап 7.1.5
Вынесем члены из-под знака корня.
Этап 7.2
Умножим на .
Этап 7.3
Упростим .
Этап 7.4
Вынесем знак минуса из знаменателя .
Этап 7.5
Перепишем в виде .
Этап 8
Этап 8.1
Упростим числитель.
Этап 8.1.1
Возведем в степень .
Этап 8.1.2
Умножим .
Этап 8.1.2.1
Умножим на .
Этап 8.1.2.2
Умножим на .
Этап 8.1.3
Вычтем из .
Этап 8.1.4
Перепишем в виде .
Этап 8.1.4.1
Вынесем множитель из .
Этап 8.1.4.2
Перепишем в виде .
Этап 8.1.5
Вынесем члены из-под знака корня.
Этап 8.2
Умножим на .
Этап 8.3
Упростим .
Этап 8.4
Вынесем знак минуса из знаменателя .
Этап 8.5
Перепишем в виде .
Этап 8.6
Заменим на .
Этап 8.7
Применим свойство дистрибутивности.
Этап 8.8
Умножим на .
Этап 8.9
Умножим на .
Этап 9
Этап 9.1
Упростим числитель.
Этап 9.1.1
Возведем в степень .
Этап 9.1.2
Умножим .
Этап 9.1.2.1
Умножим на .
Этап 9.1.2.2
Умножим на .
Этап 9.1.3
Вычтем из .
Этап 9.1.4
Перепишем в виде .
Этап 9.1.4.1
Вынесем множитель из .
Этап 9.1.4.2
Перепишем в виде .
Этап 9.1.5
Вынесем члены из-под знака корня.
Этап 9.2
Умножим на .
Этап 9.3
Упростим .
Этап 9.4
Вынесем знак минуса из знаменателя .
Этап 9.5
Перепишем в виде .
Этап 9.6
Заменим на .
Этап 9.7
Применим свойство дистрибутивности.
Этап 9.8
Умножим на .
Этап 9.9
Умножим на .
Этап 10
Окончательный ответ является комбинацией обоих решений.
Этап 11
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: