Алгебра Примеры

Решить, используя свойство квадратного корня 4/3(x+1)^2+16=0
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Объединим и .
Этап 3
Умножим обе части уравнения на .
Этап 4
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Объединим.
Этап 4.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.1.2.1
Сократим общий множитель.
Этап 4.1.1.2.2
Перепишем это выражение.
Этап 4.1.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.1.3.1
Сократим общий множитель.
Этап 4.1.1.3.2
Разделим на .
Этап 4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1.1
Вынесем множитель из .
Этап 4.2.1.1.2
Сократим общий множитель.
Этап 4.2.1.1.3
Перепишем это выражение.
Этап 4.2.1.2
Умножим на .
Этап 5
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Перепишем в виде .
Этап 6.3
Перепишем в виде .
Этап 6.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Вынесем множитель из .
Этап 6.4.2
Перепишем в виде .
Этап 6.5
Вынесем члены из-под знака корня.
Этап 6.6
Перенесем влево от .
Этап 7
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 7.1
Сначала с помощью положительного значения найдем первое решение.
Этап 7.2
Вычтем из обеих частей уравнения.
Этап 7.3
Затем, используя отрицательное значение , найдем второе решение.
Этап 7.4
Вычтем из обеих частей уравнения.
Этап 7.5
Полное решение является результатом как положительных, так и отрицательных частей решения.