Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Применим свойство дистрибутивности.
Этап 1.2
Применим свойство дистрибутивности.
Этап 1.3
Применим свойство дистрибутивности.
Этап 2
Этап 2.1
Упростим каждый член.
Этап 2.1.1
Умножим .
Этап 2.1.1.1
Возведем в степень .
Этап 2.1.1.2
Возведем в степень .
Этап 2.1.1.3
Применим правило степени для объединения показателей.
Этап 2.1.1.4
Добавим и .
Этап 2.1.2
Перепишем в виде .
Этап 2.1.2.1
С помощью запишем в виде .
Этап 2.1.2.2
Применим правило степени и перемножим показатели, .
Этап 2.1.2.3
Объединим и .
Этап 2.1.2.4
Сократим общий множитель .
Этап 2.1.2.4.1
Сократим общий множитель.
Этап 2.1.2.4.2
Перепишем это выражение.
Этап 2.1.2.5
Найдем экспоненту.
Этап 2.1.3
Умножим на .
Этап 2.1.4
Умножим .
Этап 2.1.4.1
Объединим, используя правило умножения для радикалов.
Этап 2.1.4.2
Умножим на .
Этап 2.1.5
Перепишем в виде .
Этап 2.1.5.1
Вынесем множитель из .
Этап 2.1.5.2
Перепишем в виде .
Этап 2.1.6
Вынесем члены из-под знака корня.
Этап 2.1.7
Умножим на .
Этап 2.1.8
Умножим .
Этап 2.1.8.1
Объединим, используя правило умножения для радикалов.
Этап 2.1.8.2
Умножим на .
Этап 2.1.9
Перепишем в виде .
Этап 2.1.9.1
Вынесем множитель из .
Этап 2.1.9.2
Перепишем в виде .
Этап 2.1.10
Вынесем члены из-под знака корня.
Этап 2.1.11
Умножим на .
Этап 2.1.12
Умножим .
Этап 2.1.12.1
Возведем в степень .
Этап 2.1.12.2
Возведем в степень .
Этап 2.1.12.3
Применим правило степени для объединения показателей.
Этап 2.1.12.4
Добавим и .
Этап 2.1.13
Перепишем в виде .
Этап 2.1.13.1
С помощью запишем в виде .
Этап 2.1.13.2
Применим правило степени и перемножим показатели, .
Этап 2.1.13.3
Объединим и .
Этап 2.1.13.4
Сократим общий множитель .
Этап 2.1.13.4.1
Сократим общий множитель.
Этап 2.1.13.4.2
Перепишем это выражение.
Этап 2.1.13.5
Найдем экспоненту.
Этап 2.1.14
Умножим на .
Этап 2.2
Вычтем из .
Этап 2.3
Вычтем из .
Этап 2.4
Добавим и .