Введите задачу...
Алгебра Примеры
Этап 1
Перепишем уравнение в виде .
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в куб.
Этап 3
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Перемножим экспоненты в .
Этап 3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.1.2
Упростим.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Возведем в степень .
Этап 3.3.1.2
Возведем в степень .
Этап 3.3.1.3
Добавим и .
Этап 3.3.1.4
Перепишем в виде .
Этап 3.3.1.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.3.1.6
Возведем в степень .
Этап 4
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Разложим левую часть уравнения на множители.
Этап 4.2.1
Перепишем в виде .
Этап 4.2.2
Перепишем в виде .
Этап 4.2.3
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу разности кубов, , где и .
Этап 4.2.4
Упростим.
Этап 4.2.4.1
Применим правило умножения к .
Этап 4.2.4.2
Возведем в степень .
Этап 4.2.4.3
Умножим на .
Этап 4.2.4.4
Возведем в степень .
Этап 4.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.4
Приравняем к , затем решим относительно .
Этап 4.4.1
Приравняем к .
Этап 4.4.2
Решим относительно .
Этап 4.4.2.1
Добавим к обеим частям уравнения.
Этап 4.4.2.2
Разделим каждый член на и упростим.
Этап 4.4.2.2.1
Разделим каждый член на .
Этап 4.4.2.2.2
Упростим левую часть.
Этап 4.4.2.2.2.1
Сократим общий множитель .
Этап 4.4.2.2.2.1.1
Сократим общий множитель.
Этап 4.4.2.2.2.1.2
Разделим на .
Этап 4.5
Приравняем к , затем решим относительно .
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Решим относительно .
Этап 4.5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.5.2.3
Упростим.
Этап 4.5.2.3.1
Упростим числитель.
Этап 4.5.2.3.1.1
Возведем в степень .
Этап 4.5.2.3.1.2
Умножим .
Этап 4.5.2.3.1.2.1
Умножим на .
Этап 4.5.2.3.1.2.2
Умножим на .
Этап 4.5.2.3.1.3
Вычтем из .
Этап 4.5.2.3.1.4
Перепишем в виде .
Этап 4.5.2.3.1.5
Перепишем в виде .
Этап 4.5.2.3.1.6
Перепишем в виде .
Этап 4.5.2.3.1.7
Перепишем в виде .
Этап 4.5.2.3.1.7.1
Вынесем множитель из .
Этап 4.5.2.3.1.7.2
Перепишем в виде .
Этап 4.5.2.3.1.8
Вынесем члены из-под знака корня.
Этап 4.5.2.3.1.9
Перенесем влево от .
Этап 4.5.2.3.2
Умножим на .
Этап 4.5.2.3.3
Упростим .
Этап 4.5.2.4
Окончательный ответ является комбинацией обоих решений.
Этап 4.6
Окончательным решением являются все значения, при которых верно.