Алгебра Примеры

Risolvere per y (y-1)(y-2)(y-3)=y^3-3y^2+2y
Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем.
Этап 1.2
Упростим путем добавления нулей.
Этап 1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Применим свойство дистрибутивности.
Этап 1.4
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Умножим на .
Этап 1.4.1.2
Перенесем влево от .
Этап 1.4.1.3
Перепишем в виде .
Этап 1.4.1.4
Умножим на .
Этап 1.4.2
Вычтем из .
Этап 1.5
Развернем , умножив каждый член в первом выражении на каждый член во втором выражении.
Этап 1.6
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.6.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.6.1.1.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 1.6.1.1.1.1
Возведем в степень .
Этап 1.6.1.1.1.2
Применим правило степени для объединения показателей.
Этап 1.6.1.1.2
Добавим и .
Этап 1.6.1.2
Перенесем влево от .
Этап 1.6.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.6.1.3.1
Перенесем .
Этап 1.6.1.3.2
Умножим на .
Этап 1.6.1.4
Умножим на .
Этап 1.6.1.5
Умножим на .
Этап 1.6.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 1.6.2.1
Вычтем из .
Этап 1.6.2.2
Добавим и .
Этап 2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Добавим к обеим частям уравнения.
Этап 2.3
Вычтем из обеих частей уравнения.
Этап 2.4
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Вычтем из .
Этап 2.4.2
Добавим и .
Этап 2.5
Добавим и .
Этап 2.6
Вычтем из .
Этап 3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Вынесем множитель из .
Этап 3.1.3
Вынесем множитель из .
Этап 3.1.4
Вынесем множитель из .
Этап 3.1.5
Вынесем множитель из .
Этап 3.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 3.2.2
Избавимся от ненужных скобок.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Добавим к обеим частям уравнения.
Этап 7
Окончательным решением являются все значения, при которых верно.