Алгебра Примеры

Risolvere per x кубический корень из x^2+5x = кубический корень из 5x-6
Этап 1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в куб.
Этап 2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.2.1
Сократим общий множитель.
Этап 2.2.1.1.2.2
Перепишем это выражение.
Этап 2.2.1.2
Упростим.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
С помощью запишем в виде .
Этап 2.3.1.2
Применим правило степени и перемножим показатели, .
Этап 2.3.1.3
Объединим и .
Этап 2.3.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.4.1
Сократим общий множитель.
Этап 2.3.1.4.2
Перепишем это выражение.
Этап 2.3.1.5
Упростим.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Вычтем из .
Этап 3.1.2.2
Добавим и .
Этап 3.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Перепишем в виде .
Этап 3.3.2
Перепишем в виде .
Этап 3.3.3
Перепишем в виде .
Этап 3.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.