Введите задачу...
Алгебра Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Заменим все вхождения в на .
Этап 2.2
Упростим правую часть.
Этап 2.2.1
Упростим .
Этап 2.2.1.1
Упростим выражение.
Этап 2.2.1.1.1
Вычтем из .
Этап 2.2.1.1.2
Перепишем в виде .
Этап 2.2.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.2.1.2.1
Применим свойство дистрибутивности.
Этап 2.2.1.2.2
Применим свойство дистрибутивности.
Этап 2.2.1.2.3
Применим свойство дистрибутивности.
Этап 2.2.1.3
Упростим и объединим подобные члены.
Этап 2.2.1.3.1
Упростим каждый член.
Этап 2.2.1.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.3.1.2
Умножим на , сложив экспоненты.
Этап 2.2.1.3.1.2.1
Перенесем .
Этап 2.2.1.3.1.2.2
Умножим на .
Этап 2.2.1.3.1.3
Умножим на .
Этап 2.2.1.3.1.4
Умножим на .
Этап 2.2.1.3.1.5
Умножим на .
Этап 2.2.1.3.1.6
Умножим на .
Этап 2.2.1.3.2
Вычтем из .
Этап 3
Этап 3.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 3.2
Перенесем все члены с в левую часть уравнения.
Этап 3.2.1
Вычтем из обеих частей уравнения.
Этап 3.2.2
Вычтем из .
Этап 3.3
Перенесем все члены в левую часть уравнения и упростим.
Этап 3.3.1
Добавим к обеим частям уравнения.
Этап 3.3.2
Добавим и .
Этап 3.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 3.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 3.6
Упростим.
Этап 3.6.1
Упростим числитель.
Этап 3.6.1.1
Возведем в степень .
Этап 3.6.1.2
Умножим .
Этап 3.6.1.2.1
Умножим на .
Этап 3.6.1.2.2
Умножим на .
Этап 3.6.1.3
Вычтем из .
Этап 3.6.1.4
Перепишем в виде .
Этап 3.6.1.5
Перепишем в виде .
Этап 3.6.1.6
Перепишем в виде .
Этап 3.6.2
Умножим на .
Этап 3.7
Упростим выражение, которое нужно решить для части значения .
Этап 3.7.1
Упростим числитель.
Этап 3.7.1.1
Возведем в степень .
Этап 3.7.1.2
Умножим .
Этап 3.7.1.2.1
Умножим на .
Этап 3.7.1.2.2
Умножим на .
Этап 3.7.1.3
Вычтем из .
Этап 3.7.1.4
Перепишем в виде .
Этап 3.7.1.5
Перепишем в виде .
Этап 3.7.1.6
Перепишем в виде .
Этап 3.7.2
Умножим на .
Этап 3.7.3
Заменим на .
Этап 3.8
Упростим выражение, которое нужно решить для части значения .
Этап 3.8.1
Упростим числитель.
Этап 3.8.1.1
Возведем в степень .
Этап 3.8.1.2
Умножим .
Этап 3.8.1.2.1
Умножим на .
Этап 3.8.1.2.2
Умножим на .
Этап 3.8.1.3
Вычтем из .
Этап 3.8.1.4
Перепишем в виде .
Этап 3.8.1.5
Перепишем в виде .
Этап 3.8.1.6
Перепишем в виде .
Этап 3.8.2
Умножим на .
Этап 3.8.3
Заменим на .
Этап 3.9
Окончательный ответ является комбинацией обоих решений.
Этап 4
Этап 4.1
Заменим все вхождения в на .
Этап 4.2
Упростим правую часть.
Этап 4.2.1
Упростим .
Этап 4.2.1.1
Упростим каждый член.
Этап 4.2.1.1.1
Сократим общий множитель .
Этап 4.2.1.1.1.1
Вынесем множитель из .
Этап 4.2.1.1.1.2
Вынесем множитель из .
Этап 4.2.1.1.1.3
Сократим общий множитель.
Этап 4.2.1.1.1.4
Перепишем это выражение.
Этап 4.2.1.1.2
Перепишем в виде .
Этап 4.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.1.3
Объединим и .
Этап 4.2.1.4
Объединим числители над общим знаменателем.
Этап 5
Этап 5.1
Заменим все вхождения в на .
Этап 5.2
Упростим правую часть.
Этап 5.2.1
Упростим .
Этап 5.2.1.1
Упростим каждый член.
Этап 5.2.1.1.1
Сократим общий множитель .
Этап 5.2.1.1.1.1
Вынесем множитель из .
Этап 5.2.1.1.1.2
Вынесем множитель из .
Этап 5.2.1.1.1.3
Сократим общий множитель.
Этап 5.2.1.1.1.4
Перепишем это выражение.
Этап 5.2.1.1.2
Перепишем в виде .
Этап 5.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.1.3
Объединим и .
Этап 5.2.1.4
Объединим числители над общим знаменателем.
Этап 6
Перечислим все решения.
Этап 7