Введите задачу...
Алгебра Примеры
?
Этап 1
Этап 1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 1.3.1
Подставим в многочлен.
Этап 1.3.2
Возведем в степень .
Этап 1.3.3
Умножим на .
Этап 1.3.4
Возведем в степень .
Этап 1.3.5
Умножим на .
Этап 1.3.6
Вычтем из .
Этап 1.3.7
Умножим на .
Этап 1.3.8
Добавим и .
Этап 1.3.9
Вычтем из .
Этап 1.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 1.5
Разделим на .
Этап 1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
- | - | + | - |
Этап 1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | - | + | - |
Этап 1.5.3
Умножим новое частное на делитель.
- | - | + | - | ||||||||
+ | - |
Этап 1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | - | + | - | ||||||||
- | + |
Этап 1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Этап 1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Этап 1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Этап 1.5.8
Умножим новое частное на делитель.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Этап 1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Этап 1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Этап 1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 1.5.13
Умножим новое частное на делитель.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Этап 1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Этап 1.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 1.6
Запишем в виде набора множителей.
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.2
Перепишем в виде .
Этап 2.3
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 2.4
Перепишем многочлен.
Этап 2.5
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 3
Этап 3.1
Применим правило степени для объединения показателей.
Этап 3.2
Добавим и .