Введите задачу...
Алгебра Примеры
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.5
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.9
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Объединим и .
Этап 3.2.3
Сократим общий множитель .
Этап 3.2.3.1
Сократим общий множитель.
Этап 3.2.3.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2
Сократим общий множитель .
Этап 3.3.1.2.1
Сократим общий множитель.
Этап 3.3.1.2.2
Перепишем это выражение.
Этап 3.3.1.3
Сократим общий множитель .
Этап 3.3.1.3.1
Сократим общий множитель.
Этап 3.3.1.3.2
Перепишем это выражение.
Этап 3.3.1.4
Применим свойство дистрибутивности.
Этап 3.3.1.5
Умножим на .
Этап 3.3.1.6
Применим свойство дистрибутивности.
Этап 3.3.1.7
Умножим на .
Этап 3.3.1.8
Умножим на .
Этап 3.3.2
Добавим и .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Перенесем все члены без в правую часть уравнения.
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Разделим каждый член на и упростим.
Этап 4.3.1
Разделим каждый член на .
Этап 4.3.2
Упростим левую часть.
Этап 4.3.2.1
Сократим общий множитель .
Этап 4.3.2.1.1
Сократим общий множитель.
Этап 4.3.2.1.2
Разделим на .
Этап 4.3.3
Упростим правую часть.
Этап 4.3.3.1
Вынесем знак минуса перед дробью.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: