Алгебра Примеры

Найти область определения и область значения y^2=x^2-3
Этап 1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Добавим к обеим частям неравенства.
Этап 4.2
Возьмем указанный корень от обеих частей неравенства, чтобы исключить член со степенью в левой части.
Этап 4.3
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем члены из-под знака корня.
Этап 4.4
Запишем в виде кусочной функции.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Чтобы определить интервал для первого куска, найдем, на каком участке абсолютное значение неотрицательно.
Этап 4.4.2
В части, где принимает неотрицательные значения, исключим абсолютное значение.
Этап 4.4.3
Чтобы определить интервал для второго куска, найдем, на каком участке абсолютное значение отрицательно.
Этап 4.4.4
В части, где принимает отрицательные значения, исключим абсолютное значение и умножим на .
Этап 4.4.5
Запишем в виде кусочной функции.
Этап 4.5
Найдем пересечение и .
Этап 4.6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 4.6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.6.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.6.2.2
Разделим на .
Этап 4.6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.6.3.1
Вынесем знак минуса из знаменателя .
Этап 4.6.3.2
Перепишем в виде .
Этап 4.7
Найдем объединение решений.
или
или
Этап 5
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 6
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Обозначение построения множества:
Этап 7
Определим область определения и множество значений.
Область определения:
Диапазон:
Этап 8