Алгебра Примеры

Risolvere per x 3+9/4=9/(x+4)
Этап 1
Перепишем уравнение в виде .
Этап 2
Разложим на множители каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2
Объединим и .
Этап 2.3
Объединим числители над общим знаменателем.
Этап 2.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Умножим на .
Этап 2.4.2
Добавим и .
Этап 3
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 3.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.4
У есть множители: и .
Этап 3.5
Умножим на .
Этап 3.6
Множителем является само значение .
встречается раз.
Этап 3.7
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.8
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 4
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.2.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Объединим и .
Этап 4.2.2.2
Умножим на .
Этап 4.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Сократим общий множитель.
Этап 4.2.3.2
Перепишем это выражение.
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Сократим общий множитель.
Этап 4.3.1.2
Перепишем это выражение.
Этап 4.3.2
Применим свойство дистрибутивности.
Этап 4.3.3
Умножим на .
Этап 5
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 5.1
Перепишем уравнение в виде .
Этап 5.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Вычтем из .
Этап 5.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Разделим каждый член на .
Этап 5.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Сократим общий множитель.
Этап 5.3.2.1.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.1
Вынесем множитель из .
Этап 5.3.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.2.1
Вынесем множитель из .
Этап 5.3.3.1.2.2
Сократим общий множитель.
Этап 5.3.3.1.2.3
Перепишем это выражение.
Этап 5.3.3.2
Вынесем знак минуса перед дробью.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: