Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Упростим каждый член.
Этап 1.1.1
Применим свойство дистрибутивности.
Этап 1.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.3
Умножим на .
Этап 1.1.4
Упростим каждый член.
Этап 1.1.4.1
Умножим на , сложив экспоненты.
Этап 1.1.4.1.1
Перенесем .
Этап 1.1.4.1.2
Умножим на .
Этап 1.1.4.2
Умножим на .
Этап 1.1.5
Применим свойство дистрибутивности.
Этап 1.1.6
Умножим на .
Этап 1.1.7
Умножим на .
Этап 1.2
Вычтем из .
Этап 2
Этап 2.1
Вынесем множитель из .
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Вынесем множитель из .
Этап 2.2
Разложим на множители.
Этап 2.2.1
Разложим на множители методом группировки
Этап 2.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 2.2.1.1.1
Вынесем множитель из .
Этап 2.2.1.1.2
Запишем как плюс
Этап 2.2.1.1.3
Применим свойство дистрибутивности.
Этап 2.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 2.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.2.2
Избавимся от ненужных скобок.
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Этап 4.2.2.2.1
Сократим общий множитель .
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: